Your browser does not support JavaScript!
Department of Physics, NTHU
國立清華大學物理系
繁體
首頁 > 專任教師
張存續 教授(副系主任)
張存續 教授
Chang, Tsun-Hsu
 
研究室電話:03-5742978(物理館417室)
實驗室:高頻電磁物理實驗室
實驗室電話:03-5742560(物理館119室)
傳真:03-5723052
E-mail:thschang@phys.nthu.edu.tw

  學歷
  1. 國立清華大學物理博士 (1999/06)
  現職與經歷
現職: 國立清華大學物理系教授-(物理系副系主任)(2017/9/-)
經歷:
  1. 清華大學物理系助理教授 (2003/08-2006/07)
  2. 國立清華大學物理系副教授(2006/08-2011/07 )
  3. 國立清華大學物理系教授(2011/08-) 兼副系主任(2008/08- 2012/08)
  榮譽與獎項
  1. 94學年度第八屆清華大學新進人員研究獎
  2. 近五年內獲獎情形及重要會議邀請演講至多五項

    A. 獲獎情形(Awards)

    u        2011年獲得國際發明家"學術國光獎章"

    2011 International inventor prize

    u        2007, 2008, 2009, 2010, 2011連續五年清華大學教師學術卓越獎勵

    2007, 2008, 2009, 2010, 2011 five consecutive years NTHU Excellent Research Award

    u        2005 清華大學新進人員研究獎。

    Young Faculty Research Award of Year 2005 (National Tsing Hua University, NTHU)

    u       Outstanding poster award, 1997, 2004, 2005, and 2008, Annual Meeting of Physical Society, Republic of China (PSROC).

    u       Ranked first in overall graduate courses (NTHU Physics Dept. 1995).

    u       The Phi Tau Phi Scholastic Honor Society (1991).

    u       Ranked first in undergraduate class (NCU Physics Dept. 1991).

    B.重要會議邀請演講

    u       Invited talk, The 4th International Workshop on Infrared Technologies (IW-FIRT 2012, @Fukui, Japan).

    u       Invited talk, The 7th Int. Conf. on Microwave Materials and Their Applications (June 3-6, 2012, Taipei, Taiwan).

    u       Invited talk, The 3rd International Workshop on Infrared Technologies (IW-FIRT 2010, @Fukui, Japan).

    u       Invited talk, International Conference on Infrared and Millimeter Waves, IRMMW-THz (2009@ Busan, Korea).

    u       Invited talk, “Development of frequency-tunable Terahertz Radiation Sources”, OCPA6 (2009, Lanzhou, China).

    u       Invited talk, T. H. Chang, “Development of frequency-tunable Terahertz Radiation Sources”, The international Workshop on Frontiers in Space and Fusion Energy Sciences (2008 FISFES Workshop, Tainan, Taiwan).

    u       Invited talk, Annual meeting of Physical Society, Republic of China (Feb, 2003 and 2008).

    u       Plenary talk, 2007 Plasma Science Workshop (Dec., 2007).

    u       Invited talk, International Conference on Infrared and Millimeter Waves, IRMMW-THz (Sep., 2005).

國際知名學術期刊編輯或評審委員

International Journal of Infrared and millimeter 評審委員Reviewer

IEEE Trans. on Microwave Theory and Techniques 評審委員Reviewer

IEEE Trans. on Plasma Science 評審委員Reviewer

IEEE Trans. Advanced Packaging 評審委員Reviewer

Physical Review E 評審委員Reviewer

Physics of Plasmas 評審委員Reviewer

Progress in Electromagnetics Research 評審委員Reviewer

Electronics and Telecommunication Institutes Journal (ETRI J) 評審委員Reviewer

Numerical Heat Transfer (NHT) 評審委員Reviewer

Optics Express 評審委員Reviewer

 

2008年兩岸物理研討會暨物理系系主任聯席會議程 Organizer

2010年兩岸三地高等學校物理教育學術研討會, Session Chair

2011 2nd NSC-RFBR Symposium on Nonlinear Optics and Photonics, Session Chair

2011 International Photonic Conference, Session Chair

2011 THz workshop, Organizer and Session Chair

2012, Physical Society of Republic of China, Organizer and Session Chair

 
  研究領域
主要研究:
  1. Terahertz sources (理論與實驗)
  2. Microwave/materials characterization
  3. Terahertz photonics
  研究興趣與成果
Updated on Feb 10, 2012

近五年的研究課題主要有三大類,玆說明如下:

(a) 太赫玆波源之研究與發展(Terahertz Radiation Mechanism)

發展頻率可調、高功率太赫玆(或兆赫波)源一直是我們的研究主軸。我們多年來所累積的知識與經驗,使我們勇於挑戰這前瞻研究。太赫玆的研究,隨著波源的快速發展,突飛猛進。然而,高功率、同調太赫玆波源的研發,因缺乏輻射源與太赫玆元件,就相對緩慢。在很多應用上,太赫玆波源必須要頻率可調。而磁旋返波震盪器剛好具有這個特性。

l          探討物理機制:本課題將著延續我們先前的重要物理發現,如:電磁場非線性收縮、渾沌與非穩態現象、返波線性與非線性場形分析、軸向模式競爭。了解這些理論,對實驗進展有很大的幫助,返波震盪物理豐富,模式競爭與抑制一直是大家很關心的議題;高次諧波作用可降低磁場的要求是大家的夢想;非線性效應更是關心的重點。然而,越來越多人對高頻太赫玆有興趣,表示操作在高次模式如TE01, TE21, TE41是勢在必行。這表模式競爭將更複雜,物理將更豐富。

l          拓展國際合作:在更高的頻率上,我們採取與國外合作模式,合作對象有日本Fukui Univ. Prof. Idehara (400 GHz TE41 gyro-BWO) Institute of Applied Physics, Russian Academic of Science (pulsed magnet)。與日本的合作計畫,採用混合式作用結構,作用結構是傳統式,但作用方式卻是返波機制。頻率可調範圍,超過5%。這個微波管將試用於DNP NMRESR實驗。與俄羅斯應用物理研究所合作,已發展高次諧波作用與脈衝磁場為主,正是本計畫主軸。

l          發展太赫玆相關技術:主要包括太赫玆模式轉換器與高效能電子槍(與中國科學院電子所共同研發)。由於太赫玆元件的發展受限於加工技術與模式操控技術,進展緩慢。然而,我們多年來的苦心研究,使得模式操控轉變成我們很大的優勢,從專利數就可知道此言非虛。近幾年我們投入很多人力物力與同步輻射共同發展微製程技術,目前一正在研發400GHz(TE41)1000GHz(TE01)元件。

(b) 微波材料反應與特性研究(Microwave Material Interaction)

利用微波來處理材料非常有效,作用後的材料特性通常比傳統加熱爐要來的好。例如:

l          鐵電材料PZT:發現作用後介電係數很高、損耗很小、結晶性好、與電滯特性極好,結果已經發表數篇論文。這一系列的工作,平均被引用率都不錯。

l          多晶性矽:利用微波特性我們發展兩個作用腔體---橢圓腔與近光學作用腔。這兩個腔體能將電磁場聚焦,提高反應速率。例如可將非晶性矽(a-Si)在十分鐘燒结成多晶性矽(poly-Si),這項突出的成果也已發表。

然而,為何微波處理奈米材料這麼有效,其物理機制目前仍有待進一步研究。我們和材料系金重勳與張士欽老師共同探討其物理機制,並設計一新式作用結構這方面的研究上,目前急需採購大功率微波源。

(c) 微波物理與應用 (Microwave Physics and Applications)

l          電磁穿隧效應:電動力學Maxwell方程式與量子力學Schrödinger方程式在波的特性上,具有很多相似性。我們可以利用電磁波的可控性與較易量測的特性,來分析並解決物質波量測上的不便。目前已發現電磁波的模式在整個物理圖像,上扮演十分重要的角色。近一步更發現群速度超過光速等有趣的現象。現已發表兩篇論文,都在Progress of Electromagnetic Research (PIER),目前已逐漸獲得國際重視,這領域數位大師Profs.Winful, Nimtz, and Steinberg相繼與我們接觸。

l          微波技術應用:為了發展太赫茲物理,我們對電磁波在波導管特性有極深入的了解。目前已開發多款模式轉換器、支援微波電漿反應腔設計、微波材料作用腔、鐵氧體的微波元件(循環器)、及毫米波旋轉接頭等。


代表著作
[1] T. H. Chang*, C. T. Fan, K. F. Pao, S. H. Chen, and K. R. Chu, “Stability and
   Tunability of the Gyrotron Backward-Wave Oscillator”, Appl. Phys. Lett. 90, 191501(2007). (IF: 3.841, ▲:13)
[2] T. H. Chang*, C. S. Lee, C. N. Wu, and C. F. Yu, “Exciting circular TEmn modes at low
    terahertz region”, Appl. Phys. Lett. 93, 111503 (2008). (IF: 3.841, ▲:9)
[3] T. H. Chang*, C. F. Yu, C. L. Hung, Y. S. Yeh, M. C. Msiao, and Y. Y. Shin, “W-band
     TE01 gyrotron backward-wave oscillator with distributed loss”, Phys. Plasmas 15, 073105 
     (2008). (IF: 2.320, ▲:7)
[4] N. C. Chen, C. F. Yu, C. P. Yuan, and T. H. Chang*, “A mode-selective circuit for TE01
    Gyrotron Backward-wave Oscillator with wide-tuning range”, Appl. Phys. Lett. 94, 101501
    (2009). (IF: 3.841, ▲:11)
[5] T. H. Chang*, T. Idehara, I. Ogawa, L. Agusu, C. C. Chiu, and S. Kobayashi, “Frequency 
      tunable gyrotron using backward-wave components”, J. Appl. Phys. 105, 063304 (2009).
      (IF: 2.079, ▲:15)
[6] N. C. Chen, T. H. Chang*, C. P. Yuan, T. Idehara and I. Ogawa, “Theoretical investigation
     of a high efficiency and broadband sub-terahertz gyrotron", Appl. Phys. Lett. 96, 161501
      (2010). (IF: 3.841, ▲:5)
 

 

全部著作 (Click 展開/隱藏)

近五年內(2007---迄今)之研究成果

A.SCI期刊論文 (Link to Recent Publications)

[1]        A. Bhaskar, T. H. Chang*, H. Y. Chang, and S. Y. Cheng, “Low-temperature crystallization of sol-gel derived PZT thin films by 2.45GHz microwave energy,” Thin Solid Films, 515, 2891 (2007). (IF: 1.935, :13)

[2]        T. H. Chang*, C. T. Fan, K. F. Pao, S. H. Chen, and K. R. Chu, “Stability and Tunability of the Gyrotron Backward-Wave Oscillator”, Appl. Phys. Lett. 90, 191501 (2007). (IF: 3.841, :13)

[3]        A. Bhaskar, H. Y. Chang, T. H. Chang*, and S. Y. Cheng, “Effect of microwave annealing temperatures on lead zirconate titanate thin films,” Nanotechnology, 18, 395704 (2007). (IF: 3.652, :10)

[4]        C. T. Fan, T. H. Chang*, K. F. Pao, S. H. Chen, and K. R. Chu, “Stable, high efficient gyrotron backward-wave oscillator”, Phys. Plasmas, 14, 093102 (2007).(IF: 2.320, :2)

[5]        K. F. Pao, C. T. Fan, T. H. Chang, C. C. Chiu, and K. R. Chu, “Selective suppression of high order axial modes of the gyrotron backward-wave oscillator”, Phys. Plasmas, 14, 093301 (2007). (IF: 2.320, :2)

[6]        N. C. Chen, C. F. Yu, and T. H. Chang*, “A TE21 second harmonic gyrotron backward-wave oscillator with slotted structure”, Phys. Plasmas, 14, 123105 (2007).(IF: 2.320, :1)

[7]        T. H. Chang*, C. F. Yu, C. L. Hung, Y. S. Yeh, M. C. Msiao, and Y. Y. Shin, “W-band TE01 gyrotron backward-wave oscillator with distributed loss”, Phys. Plasmas15, 073105 (2008). (IF: 2.320, :7)

[8]        T. H. Chang*, C. S. Lee, C. N. Wu, and C. F. Yu, “Exciting circular TEmn modes at low terahertz region”, Appl. Phys. Lett. 93, 111503 (2008). (IF: 3.841, :9)

[9]        A. Bhaskar, T. H. Chang*, H. Y. Chang, and S. Y. Cheng, “Pb(Zr0.53Ti0.47)O3thin films with different thickness obtained at low-temperature by microwave irradiation”, Applied Surface Science 255, 3795 (2009). (IF: 1.795, :3)

[10]    T. H. Chang*T. Idehara, I. Ogawa, L. Agusu, C. C. Chiu, and S. Kobayashi, “Frequency tunable gyrotron using backward-wave components”, J. Appl. Phys. 105, 063304 (2009). (IF: 2.079, :15)

[11]    S. C. Fong, C. Y. Wang, T. H. Chang*,and T. S. ChinCrystallization of amorphous Si film with SiC susceptor by microwave annealing”, Appl. Phys. Lett. 94, 102104 (2009).(IF: 3.841, :4)

[12]    T. H. Chang*, and B. R. Yu, “High-Power Millimeter-Wave Rotary Joint”, Rev. Sci. Instrum. 80, 034701 (2009). (IF: 1.601, :3)

[13]    N. C. Chen, C. F. Yu, C. P. Yuan, and T. H. Chang*, “A mode-selective circuit for TE01Gyrotron Backward-wave Oscillator with wide-tuning range”, Appl. Phys. Lett. 94, 101501 (2009). (IF: 3.841, :11)

[14]    C. P. Yuan, T. H. Chang*, N. C. Chen, and Y. S. Yeh, "Magnetron injection gun for a broadband gyrotron backward-wave oscillator", Phys. Plasmas, 16, 073109 (2009). (IF: 2.320, :1)

[15]    H. Y. Yao and T. H. Chang*, “Effect of high-order modes on tunneling characteristics",Progress In Electromagnetics Research, PIER, 101, 291-306, 2010. (IF: 3.745, :2)

[16]    T. H. Chang*, B. Y. Shew, C. Y. Wu, and N. C. Chen, "X-ray microfabrication and measurement of a terahertz mode converter", Rev. Sci. Instrum. 81, 054701 (2010).(IF: 1.601, :0)

[17]    N. C. Chen, T. H. Chang*, C. P. Yuan, T. Idehara and I. Ogawa, “Theoretical investigation of a high efficiency and broadband sub-terahertz gyrotron", Appl. Phys. Lett.96, 161501 (2010). (IF: 3.841, :5)

[18]    T. H. Chang*, C. H. Li, C. N. Wu, and C. F. Yu, " Generating pure circular TEmnmodes using Y-type power dividers", IEEE Trans. Microwave Theory Tech. 58, 1543 (2010). (IF: 2.025, :2)

[19]    Y. S. Yeh, T. H. Chang, C. T. Fan, C. L. Hung, J. N. Jhou, J. M. Huang, J. L. Shiao, Z. Q. Wu, and C. C. Chiu, "Nonlinear oscillation behavior of a driven gyrotron backward-wave oscillator", Phys. Plasmas 17, 113112 (2010). (IF: 2.320, :0)

[20]    C. P. Yuan, S. Y. Lin, T. H. Chang*, and B. Y. Shew, " Millimeter-wave Bragg diffraction of micro-fabricated crystal structures", American Journal of Physics, 79, 619 (2011). (IF: 0.791, :1)

        [21]    S. C. Fong, H. W. Chao, T. H. Chang, H. J. Leu, I. S. Tsai, S. Y. Cheng, C. Y. Wang, 
        T. S. Chin, "Microwave-crystallization of amorphous silicon film using carbon-overcoat as 
       susceptor", Thin Solid Films, 
519, 4196 (2011). (IF: 1.935)

[22]    C. P. Yuan and T. H. Chang* Modal analysis for metal-stub photonic band gap structures in a parallel-plate waveguide", Progress In Electromagnetics Research, PIER 119, 345 (2011). (IF: 3.745)

         [23]    C. L. Hung, T. H. Chang, and Y. S. Yeh, "Effects of tapering structures on the
     characteristics of a coaxial-waveguide gyrotron backward-wave oscillator " Phys. Plasmas18
        103113 (2011). (
IF: 2.320)

[24]    T. H. Chang*, H. W. Chao, F. H. Syu, W. Y. Chiang, S. C. Fong, and T. S. Chin, "Efficient heating with a controlled microwave field", Rev. Sci. Instrum. 82, 124703 (2011). (IF: 1.601)

[25]    H. Y. Yao and T. H. Chang*, “Experimental and theoretical studies of a broadband superluminality in Fabry-Perot interferometer" Progress In Electromagnetics Research, PIER 122, 1 (2012). (IF: 3.745)

審核中或即將投稿(Manuscripts under review or to be submitted)

[26]    H. Y. Yao, N. C. Chen, and T. H. Chang*, “Group delay decomposition for analysis of positive superluminality and negative group delay," submitted to New Journal of Physics.

        [27]    T. H. Chang*, N. C. Chen, H. W. Chao, J. C. Lin, C. C. Huang, and C. C. Chen "Generating large area uniform microwave field with distributed inputs," submitted to Physics of Plasmas.

[28]    N. C. Chen, T. H. Chang*, and C. Y. Yang "Broadband excitation of coaxial TE01 mode for multi-channel system at low terahertz," submitted to Applied Physics Letters.

[29]    K. R. Chu, L. R. Barnett, W. Y. Chiang, T. H. Chang, H. Y. Chang, and S. Y. Cheng, “A quasi-optical system for ultra rapid microwave heating,” to be submitted to Applied Physics Letters.

B.中文專刊 (Chinese Journal papers)

[1]    張存續鄭復興, 與楊滋德, “真空爐焊接技術探討”, 真空科技, 第12卷, 第4期, p.36, (1999).

[2]    洪健倫, 張存續朱國瑞, 戴涪, 與呂康威, “應用於大面積微波電漿源之輻射共振腔原理探討”, 真空科技, 第13卷, 第3期, p.25, (2000).

[3]    張存續, “高速數位電路之電源完整性”, 電子月刊, 二月號, pp. 186-193 (2003). (每月精選)

[4]    朱國瑞, 柏賴德, 張存續張宏宜, 姜惟元, 戴伶潔, 余青芳, 寇崇善, 鄭世裕, “一個應用微波處理材料的新工具”, 工業材料, 十二月號, pp.77-80 (2004).

[5]    張存續, “微波與材料之頻率響應與反應特性”, 工業材料, 十二月號, pp.81-87 (2004).

[6]    朱國瑞, 張存續陳仕宏, “電子迴旋脈射---原理與應用”, 物理雙月刊, 四月號(2006)

[7]    張存續, “高功率可調頻太赫茲波源---電子磁旋脈射”, 物理雙月刊, 四月號(2009)

C. 專利 (Patents)

[1]      戴涪, 許覺良, 朱國瑞, 馮嘉鳴, 張存續, 呂康威, “圓極化循迴器”,台灣, 專利證書號: 125309.

[2]      戴涪, 許覺良, 朱國瑞, 李學志, 彭國源, 賈漢榮, 賀克勤, 張存續, ”300FECR電漿機台設備”,台灣, 專利證書號:137744.

[3]      張存續”功率分配系統之共振頻率之調離方法”,台灣,專利證書號:91136048.

[4]      T. H. Chang, “Method of Detuning Resonant Frequencies of a Power Distribution System,” US 7,102,466

[5]      張存續”藉由外部耦合電阻性終結器降低功率分配系統中之開關雜訊之方法,” 台灣,專利證書號:004359.

[6]      T. H. Chang and J. Chen, “Method of Reducing Switching Noise in a Power Distribution System by External Coupled Resistive Terminations,” US 6,903,634.

[7]      余青芳, 張存續“極化高次模電磁波耦合器及耦合方法”,台灣, 專利證書號:I267231.

[8]      T. H. Chang, C. F. Yu, and C.T. Fan, ”Novel polarization controllable TE21 mode converter,” US 7394335.

[9]      張存續余青芳, “成比例配置分流裝置之高次模電磁波耦合器及耦合方法”,台灣, 專利證書號:I267226.

[10]  T. H. Chang and C. F. Yu, “High Performance TE01 mode converter,” US 7,396,011.

[11]  張宏宜,張存續,連曼均,鄭世裕,盧佳卉,方文志, ”可調式材料處理裝置”,台灣,專利證書號:I260816.

[12]  朱國瑞, 柏賴德, 張存續張宏宜, 姜惟元, 余青芳, 戴伶潔, 鄭世裕, 寇崇善, “近光學式材料處理裝置”,台灣, 專利證書號:I252063.

[13]  L. R. Barnett, K. R. Chu, T. H. Chang, H. Y. Chang, W.Y. Chiang, C. F. Yu, L. C. Tai, S.Y. Cheng, C.S. Kou, Quasi-optical material treatment apparatus,” US 7,381,932.

[14]  張存續余博仁, “模式轉換器及具有此模式轉換器之微波旋轉接頭”,台灣, 申請號:097144842.

[15]  T. H. Chang and B. R. Yu, “Mode Converter and Microwave Rotary Joint with the Mode Converter,” US patent pending, Application No. 12/468,332.已獲證

[16]  張存續林柏宏, 黃重均, “微波提供裝置以及微波電漿系統”,台灣, 申請號:098143125。

[17]  T. H. Chang, P. H. Lin, C. C. Huang, "Microwave supplying apparatus and microwave plasma system", Application No. 12/646981.

[18]  陳乃慶、張存續,“可模式選擇之磁旋管之作用結構”,台灣,申請號:098124992

[19]  N. C. Chen and T. H, Chang, “Mode-Selective Interactive Structure for Gyrotrons”, US patent pending, Application No. 12/558,935.

[20]  張存續、陳乃慶、吳俊潭,“相互隔離之雙模轉換器及其應用”,台灣,申請號:099107265

[21]  T. H, Chang, N. C. Chen, and C. T. Wu, “Isolated dual-mode converter and application thereof”, US patent pending, Application No. 12/822,446.

[22]  張存續、袁景濱, “微波繞射系統”, 台灣,申請號099128235

[23]  張存續、袁景濱, “微波繞射系統”, 大陸,申請號201010544470.6

[24]  T. H, Chang, C. P. Yuan, “Microwave diffraction system”, US patent pending, Application No. 12/909,326.

[25]  張士欽,張存續,邱子桓,陳宗漢, "奈米碳管複合式環氧樹脂黏著劑及其使用方法", 台灣,申請號099138068。

[26]  張士欽,張存續,邱子桓,陳宗漢, "奈米碳管複合式環氧樹脂黏著劑及其使用方法", 大陸,申請號201010591966.9。

[27]  金重勳, 張存續, 方世杰, 趙賢文, “非晶矽薄膜之微波照射結晶方法”, 台灣,申請號。

[28]  T. S. Chin, T. H. Chang, S. J. Fang, H. W. Chao, “Method of crystallization of amorphous silicon using microwave irradiation”, US patent pending.

[29]  陳乃慶, 張存續, 楊慶源, “同軸TE01模多通道微波旋轉耦合器”, 台灣,申請中。

[30]  N. C. Chen, T. H. Chang, C. Y. Yang, “Coaxial TE01 multichannel microwave rotary joint”, US patent pending.

[31]  張存續陳乃慶, 蔡育超, 黃重均,“高功率寬頻微波窗”, 台灣, 申請中。

[32]  T. H. Chang, N. C. Chen, Y. C. Tsai, C. C. Huang, "High-power, broadband microwave window", US patent pending.

[33]  張存續, 金重勳, 趙賢文, 方世杰, “多槽式微波共振器”, 台灣,申請中。

[34]T. H. Chang, T. S. Chin, H. W. Chao, S. J. Fang, Multi-slot microwave resonator, US patent pending.

 
 

 

瀏覽數  
將此文章推薦給親友
請輸入此驗證碼
Voice Play
更換驗證碼